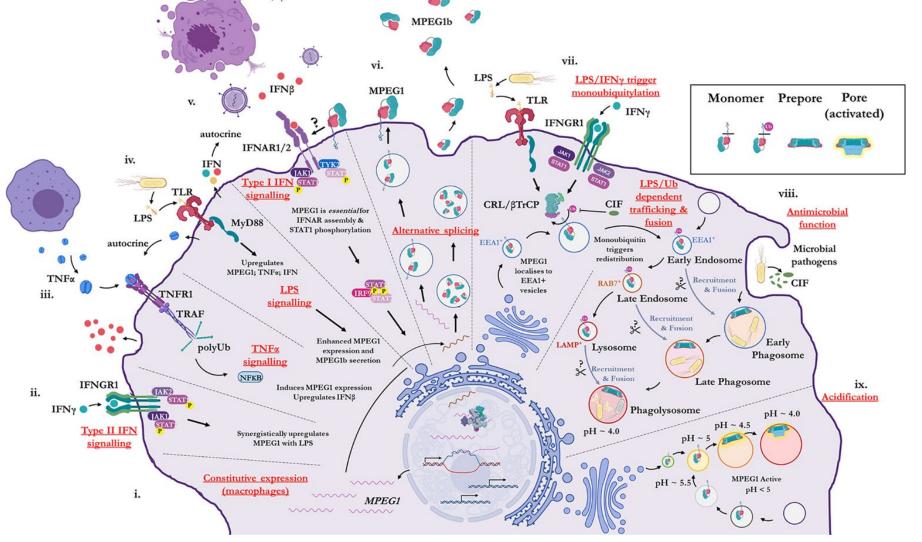
COLUMBIA COLLEGE OF DENTAL MEDICINE

Homozygous Nonsense Variant In Macrophage-Expressed Gene 1

(MPEG1)/Perforin-2: A Case Study

Julian Mis¹, Mythily Ganapathi², Wendy K. Chung^{3*}

¹ Columbia University College of Dental Medicine, New York, New York, ² Department of Pathology and Cell Biology Columbia University Medical Center, New York, New York,³ Department of Pediatrics, Columbia University, New York New York


INTRODUCTION

Macrophage-expressed gene 1 (MPEG1) encodes for Perforin-2 (P2) which is an antibacterial protein belonging to the membrane attack complex/perforin forming (MACPF) superfamily of pore-forming proteins¹. MACPR proteins are responsible for forming large transmembrane channels known as membrane attack complexes (MAC), acting as immune effectors against bacterial pathogens¹. Perforin-2 (P2) is expressed in innate immune cells (macrophages, dendritic cells, natural killer cells, and neutrophils) and can be upregulated by proinflammatory signals such as type I and II interferons, lipopolysaccharides (LPS), and bacterial infections². In its resting state, P2 is in the endoplasmic reticulum, Golgi, and early endosomal membranes². After a bacterial infection, it is monoubiquitinated in response to inflammatory signals and redistributes to the endosomal and phagosomal bodies that contain the phagocytosed bacteria²⁻³. After re-localizing, P2 polymerizes and refolds to form large pores allowing lysozyme, reactive oxygen species, and nitric oxide to eliminate the phagocytized bacterial organisms²⁻³. In published research, five cases with heterozygous pathogenic variants in the MPEG1 gene have been identified, all with histories that include recurrent pulmonary or soft tissue infections⁴⁻⁵. Our patient is the first documented case with a homozygous nonsense variant in the MPEG1 gene.

RESULTS: PHENOTYPIC ANALYSIS

	Index Case	Mereselis et al. 2020	McCormack et al. 2017			
Subject ID	1	II	111	IV	V	VI
Gender	F	F	F	F	F	F
Year of Birth	1979	1997	1945	1929	1956	1951
Ethnicity	South Korean (adoption)	Unknown (adoption)	Caucasian	Caucasian	Caucasian	Caucasian
-	Y; Gum		Y;pulmonary MACª	Y;pulmonary MACª	Y;multiple pneumonias and URI's; pulmonary MAC ^a ; panuveitis	Y;pulmonary MACª
Most Common Infectious Organisms		Staph aureus, Staph	Mycobacteriu m avium, M. intracellular, Pseudomonas	gordonae, Pseudomonas	M. avium, M. intracellular, pseudomonas	M.avium, aspergillus fumigatus
	Hyperparathyro idism, amenorrhea, irregular menses		Osteopenia, DMII	N/A	Osteopenia	Osteopenia
	•	mild NK cell	N/A	IgG deficiency	N/A	N/A
	Crohns (in remission), recurrent pancreatitis	Gastroparesis	N/A	N/A	N/A	N/A
	hair loss, zinc deficiency, bilateral sensorineural	h/x of D.V.T. and P.E.;bilateral sensorineural hearing		h/x chronic lymphocytic leukemia	Lupus nephritis and cerebritis; vitiligo	COPD

@

Fig. 1. Illustration of MPEG1's role within the cell¹

ECTI	VED

- To analyze the phenotypic manifestations of our patient with the *MPEG1* variant.
- Review the published literature on documented *MPEG1* cases for phenotypes and genotypes.
- Compare the published data with our patient.

METHODS & MATERIAL

- Our patient was initially evaluated at Columbia University as a part of the DISCOVER program.
- Data collected during this initial evaluation was used to characterize the clinical manifestations.

DISCUSSION

 Published literature on all the published MPEG1 cases was reviewed and compared with the clinical features of our patient.

RESULTS: SUMMARY OF INDEX

Our Patient is a 39-year-old female of South Korean ancestry who presented with multiple issues including including bilateral sensorineural hearing loss, hyperparathyroidism, osteoporosis, a history of periodic subconjunctival hemorrhage, Crohn's disease, recurrent pancreatitis, blistering and hives on her hands, irregular menses over the last year, eczema, recent hair loss, significant dental issues and T-cell lymphocytopenia. Further dental history includes rapid and progressive enamel loss requiring approximately 3 crowns per year and has resulted in several failed root canals and lost teeth. This patient's whole exome sequencing reanalysis revealed a homozygous nonsense variant (c.445C>T (p.Arg149Ter)) in the *MPEG1* gene. She is adopted; therefore, family and pregnancy exposure histories are unknown. There is concern that she may have a variation of a common variable immunodeficiency (CVID) and intravenous immunoglobulin (IVIG) has been suggested.

RESULTS: GENOTYPIC ANALYSIS

	Index Case	Mereselis et al. 2020	McCormack et al. 2017			
Subject ID	I	11	ш	IV	V	VI
MPEG1 mutation						
(nucleotide)	c445C>T	c.1290C>A	c.217A>G	c.946C>T	c.1192C>T	c.1213C>A

- Our patient's evaluation showed symptoms consistent with an immunodeficiency; similar to that identified in the other published cases. Our subject also had additional features not clearly related to the immune system.
- The project was limited by data available only from the initial evaluation. Additionally, one of the findings of the initial evaluation was a hypermetabolic lymph node, however that could not be further studied due to the node's proximity to the carotid artery.
- Mechanistic studies are currently being performed to determine how a homozygous nonsense variant in the MPEG1 gene differs from the published heterozygous cases.

CONCLUSION

- Based on an initial evaluation, a homozygous nonsense variant of the MPEG1 gene is associated with an immunodeficiency.
- Due to the syndromic presentation of the subject and only having a single, initial evaluation, further testing is currently underway.

ACKNOWLEDGEMENTS

- Julian Mis was supported by a Columbia University College of Dental Medicine Summer Research Fellowship.
- Julian Mis would like to thank Dr. Wendy K. Chung and Dr. Mythily Ganapathi for their guidance and support during the duration of this project.

REFERENCES

MPEG1	p.R149*		p.T73A	p.P316S	p.Q398*	p.P405T
mutation	(Arginine→	p.Y430*	(Threonine→	(Proline→	(Glutamine→	(Proline→
(amino acid)	stop)	(Tyrosine→stop)	Alanine)	Serine)	stop)	Threonine)
MPEG1 mutation						
allele	Homozygous	Heterozygous	Heterozygous	Heterozygous	Heterozygous	Heterozygous
Type of mutation	Nonsense	Nonsense	Missense	Missense	Nonsense	Missense
Mutation Origin	Unknown (adopted)	Unknown (adopted)	N/A	N/A	Father (healthy phenotype)	N/A

- Bayly-Jones C, Pang SS, Spicer BA, Whisstock JC, Dunstone MA. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. *Frontiers in Immunology*. Published online 2020. doi:10.3389/fimmu.2020.581906
- McCormack RM, de Armas LR, Shiratsuchi M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. *eLife*. Published online 2015. doi:10.7554/eLife.06508
- **3.** McCormack R, De Armas L, Shiratsuchi M, Podack ER. Killing machines: Three pore-forming proteins of the immune system. *Immunologic Research*. Published online 2013. doi:10.1007/s12026-013-8469-9
- 4. McCormack RM, Szymanski EP, Hsu AP, et al. MPEG1/perforin-2 mutations in human pulmonary nontuberculous mycobacterial infections. *JCI Insight*. Published online 2017. doi:10.1172/jci.insight.89635
- 5. Merselis LC, Jiang SY, Undiagnosed Diseases Network, et al. MPEG1/Perforin-2 Haploinsufficiency Associated Polymicrobial Skin Infections and Considerations for Interferon-γ Therapy. *Frontiers in Immunology*. Published online 2020. doi:10.3389/fimmu.2020.601584

Presented at the 99th Annual Session of the Greater New York Dental Meeting in 2023.